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Unexpected B-ring regioselective di-nitration of diosmetin, a Citrus flavonoid
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Nitration in position C-8 of diosmetin, an easily available citroflavonoid, was studied in order to gain
access to original analogs. The one-step nitration proved impossible, as mono or di-nitration on C-2’
and C-6' positions on the lateral B ring of the molecule was exclusively observed. This surprisingly
straightforward di-nitration of ring B, showing a lack of reactivity of ring A despite its high activation,

has never been mentioned to date. Nitration in position C-8 was therefore performed in five steps, requir-
ing selective deactivation of ring B.

© 2009 Elsevier Ltd. All rights reserved.

Numerous publications describe the preparation of nitroflav-
ones. Some of these compounds have been synthesized for their
pharmacological interest, with anxiolytic,! cytotoxic,?> and anti-
allergic® properties. Others, without remarkable properties, are
intermediates toward aminoflavones which have an interest in
the fields of cancer,® diabetes,”> and neuroprotection.® Different
strategies have been described, in which nitro groups are intro-
duced either at the early stages of synthesis, or during the late
steps, on the fully constituted flavone skeleton itself. We focused
on the latter approach, using diosmetin 1, a natural citroflavonoid
readily accessible from hesperidin or diosmin as a starting mate-
rial. Our aim was to study conditions of nitration so as to obtain
original analogs bearing a substituent in position 8 on the A ring.
A thorough examination of the literature concerning the nitration
of natural 5,7-dioxygenated flavones showed that the site of
nitration (A or B ring) is strongly dependent on the nature of
substituents. When the B ring is unsubstituted (5,7-dihydroxyflav-
one = chrysin 2), nitration occurs only, as expected, on the A ring,
primarily in position 8 then, under stronger conditions, in position
6.3°7 For a monosubstituted B ring, with a hydroxyl group in posi-
tion 4’ (apigenin 3 and its 7-O-neohesperidoside = rhoifolin),
mono-nitration is mainly observed at position 3’ of the B ring.®
However, surprisingly, for a methoxy substitution in 4’ (acacetin
4), nitration exclusively occurs on the A ring, even after deactiva-
tion (acacetin-7-O-benzyl-sulfonate leading to a mixture of 6 and
8 mononitrated derivatives).®

Nitration of diosmetin with nitric acid (1 or 2 equiv) was con-
ducted in acetic acid (CH3;COOH) or in trifluoracetic acid (TFA). In
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TFA (1 equiv, HNO3, 0°C, 30 min), the reaction medium was
homogeneous and yielded, after treatment and flash chromatog-
raphy, a major product (42%). This compound displayed a molec-
ular peak at m/z 345 in EIMS, accordingly to a mono-nitration
process. However, '"H NMR revealed split signals in a 53:47 ratio,
in favor of a mixture of two isomers. In particular, the occurrence
of two doublets (J = 8.2 Hz) at 7.30 and 7.48 ppm, assigned to H-
5" and H-6' and of two singlets at 7.14 and 7.79 ppm correspond-
ing to H-2" and H-5 proved them to be 2'-nitrodiosmetin 5a
(major) and 6'-nitrodiosmetin 5b (minor).® In CH;COOH (HNO,
1 equiv, 60 °C, 1h), the reaction medium never cleared. TLC on
silica gel showed, in addition to residual diosmetin and monon-
itrated products, the presence of a bright yellow, highly polar
compound. The latter became the largely major product of the
reaction performed with 2 equiv of HNO; in CH3COOH (60 °C,
1h) or in TFA (0 °C, 30 min), while diosmetin and mononitrated
compounds were no longer observable. The CH3COOH reaction,
cleaner than that in TFA, allowed isolation of this major com-
pound (58%), identified as 2’,6'-dinitrodiosmetin 6. The dinitro-
substitution was evidenced by EIMS with a molecular peak at
m/z 390. Di-substitution of the B ring was deduced from 'H
NMR spectra: H-6 and H-8 signals were still observed at 6.26
and 6.33 ppm (J=2Hz). An Overhauser effect between signals
of H-5' and methoxyl group allowed positioning of nitro groups
at positions 2’ and 6'. Lastly, 2D NMR provided full structural
confirmation for 6.!°

MMono-nitration at C-2’ or C-6', the two activated positions
of the B ring, is not surprising in itself. However, mono-nitration
would be expected at the A ring for iodination, the only electro-
philic substitution described so far on diosmetin, occurred
exclusively in positions 6 and 8.!' In this case, the iodination re-
agent (BTMA.ICl;) was used in a CH,Cl,/MeOH/CaCOs3 system.
We therefore decided to study the behavior of diosmetin toward
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another electrophilic reagent, N-bromosuccinimide, under similar
conditions as those described for nitration (NBS 1 or 2 equiv,
TFA, rt, 1 h). One equivalent of NBS provided a mixture of four
compounds: the remaining diosmetin, 6- and 8-bromodiosmetin,
and 6,8-dibromodiosmetin 7,'? the latter being quantitatively ob-
tained with 2 equiv NBS. Di-nitration at C-2’ and C-6' appears
much more surprising for several reasons: (a) formation of 6
was possible under mild conditions while, in comparison, prepa-
ration of 6,8-dinitrochrysin requires 10 h at 65 °C;> (b) two nitro
groups were introduced on the B ring, despite the presence of a
strongly activating 5,7-diphenolic system on the A ring, although

a first nitro substitution is well known to deactivate an aromatic
ring in regard to a second nitration (flavone itself leads, with ex-
cess HNOs, to a mixture of two dinitroflavones substituted at C-6
on the A ring, and at C-3' or C-4' on ring B).! We thus wondered
whether the exclusive nitration at C-2’ and/or C-6' of the B ring
could result (when 2’ and 6’ are activated as in 1) from a priv-
ileged reactivity of these positions on the B ring. However, that
hypothesis was not supported by the nitration reaction of 3'-
hydroxyflavone 8 (1 equiv HNOs;, TFA, 0°C, 30 min) which led
to the isolation and the identification of 9a (23%), 9b (23%),
and 9c (18%), the three mononitro isomers at 2/, 4, and €,
respectively.’® Looking for the proof of a possible interaction of
the first nitro substituent with ring A, we compared A ring pro-
ton chemical shifts in mononitro analogs 5a, 5b, and 9a-c and in
their respective precursors, 1 and 8. Significant § variations
(shielding) were observed for the sole H-8 signal and only with
2’ or 6 nitroflavones [—0.23 ppm for 5a and 5b vs 1; —0.30 and
—0.19 ppm for 9a and 9c¢ vs 8 (but +0.01 ppm for 9b)], which
can be indicative of a diamagnetic anisotropy effect of the 2’
or 6 nitro group on H-8. In order to verify this possible aniso-
tropic effect of the 2’ or 6 nitro group on H-8, we performed
a caussian 03' optimization calculation HF/6-31G(d,p) over 1,
5a, and 5b compounds. According to Gaussian results and con-
sidering charge distribution we did not find a plausible explana-
tion for these privileged nitrations in positions 2’ or 6’ belonging
to ring B. In fact, Gaussian results for compound 1 clearly dem-
onstrate that position 8 should be the first nitration site. How-
ever, the distance and position of the nitro groups in respect
to H-8 in the optimized structures of 5a and 5b shows that
nitration at position 2’ or 6’ could have an anisotropic effect
on H-8. A similar result showing this anisotropic effect of a nitro
group was published by Martin and Nance.!® So we think that
this observed then confirmed through-space effect of the first
2’ or 6 nitro group on H-8 could be related to the absence of
the second nitration at this position.

This attack of diosmetin, at C-2’ and C-6’ only, indicates that
nitration on the A ring at C-8 requires a previous deactivation of
the B ring. Therefore, our initial objective was reached from dios-
metin by the following five-step sequence (Scheme 1): (a) 7-O ben-
zylation to 10;'® (b) 3'-0 tosylation to 11 (mp 208-211 °C); (c)
debenzylation to 12;'7 (d) nitration at C-8 to 13;'8 (e) hydrolysis
to 8-nitrodiosmetin 14.'° The nitration at C-8 was unambiguously
proved by comparison of 'H and '3C NMR spectra of 1 and 14: in
14, deshielding of H-6 (+0.18 ppm) and shielding of C-7
(—6.4 ppm) and C-9 (—7.5 ppm) signals (carbons ortho to the nitro
group) versus diosmetin.2°

As a conclusion, this nitro-functionalization at C-8, originally
supposed to be a straightforward reaction, appears to be more
complex, and highlights an unusual and unknown reactivity
within this already well known and well-explored series of
flavonoids.
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Scheme 1. Reagents and conditions: (a) KHCOs 1.1 equiv, benzyl chloride 1.2 equiv, DMF, 120 °C, 2 h, 66%; (b) tosyl chloride 5 equiv, pyridine, rt, 1 h, 93%; (c) Ho, Pd-C 10%,
DMF, 1t, 2 h, 94%; (d) HNO5 1 equiv, CH;COOH, 120 °C, 0.25 h then 60 °C, 1.5 h, 45%; (e) 0.5 N aqueous KOH/MeOH 2/1, 120 °C, 0.5 h, 75%.
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